29. Gina’s father _________-to see thrillers.A. likesB. doesn’ t likeC. wantsD. often goes

29. Gina’s father _________-to see thrillers.

A. likes

B. doesn’ t like

C. wants

D. often goes


相关考题:

1. There are many clouds coming,it_________ rain soon.A.will beB.is going toC.looks likeD.likes

阅读下列函数说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]Kruskal算法是一种构造图的最小生成树的方法。设G为一无向连通图,令T是由G的顶点构成的于图,Kmskal算法的基本思想是为T添加适当的边使之成为最小生成树:初始时,T中的点互相不连通;考察G的边集E中的每条边,若它的两个顶点在T中不连通,则将此边添加到T中,同时合并其两顶点所在的连通分量,如此下去,当添加了n-1条边时,T的连通分量个数为1,T便是G的一棵最小生成树。下面的函数void Kruskal(EdgeType edges[],int n)利用Kruskal算法,构造了有n个顶点的图 edges的最小生成树。其中数组father[]用于记录T中顶点的连通性质:其初值为father[i]=-1 (i=0,1,…,n-1),表示各个顶点在不同的连通分量上;若有father[i]=j,j>-1,则顶点i,j连通;函数int Find(int father[],int v)用于返回顶点v所在树形连通分支的根结点。[函数]define MAXEDGE 1000typedef struct{ int v1;int v2;}EdgeType;void Kruskal(EdgeType edges[],int n){ int father[MAXEDGE];int i,j,vf1,vt2;for(i=0;i<n;i+ +) father[i]=-1;i=0;j=0;while(i<MAXEDGE j<(1)){ vf1=Find(father,edges[i].v1);vf2=Find(father,edges[i].v2);if((2)){(3)=vf1;(4);printf("%3d%3d\n",edges[i].v1,edges[i].v2);}(5);}}int Find(int father[],int v){ int t;t=v;while(father[t]>=0) t=father[t];return(t);}

________ stand her.It’s dangerous.A.NoB.NotC.Don’tD.Doesn’t

1. Mr Brown is Tom's ___________A. motherB. auntC. sisterD. father

3.Jack _______like baseball ________volleyball.A. don't ; orB. doesn't ; orC.don't ;andD.doesn't ;and

She_____ answer my phone call yesterday.A. doesn'tB. didn'tC. wasn't

Debt crises broke out in the 1980s.A.RightB.WrongC.Doesn't say

She likes playing the violin , but he() A.is notB.don'tC.doesn't

4. The meeting ______ begin ______ the last man came.A. didn’t ;untilB. not; untilC. doesn’t; untilD. will; until