若二叉排序树非空,则新结点的值和根结点比较,若小于根结点,则插入到右子树;否则插入到左子树。() 此题为判断题(对,错)。

若二叉排序树非空,则新结点的值和根结点比较,若小于根结点,则插入到右子树;否则插入到左子树。()

此题为判断题(对,错)。


相关考题:

●二叉排序树或者是一棵空树,或者是具有如下性质的二叉树:若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值;其左、右子树本身就是两棵二叉排序树。根据该定义,对一棵非空的二叉排序树进行 (42)遍历,可得到一个结点元素的递增序列(42)A. 先序(根、左、右)B. 中序(左、根、右)C. 后序(左、右、根)D. 层序(从树根开始,按层次)

由关键字序列(12,7,36,25,18,2)构造一棵二叉排序树(初始为空,第一个关键字作为根结点插入,此后对于任意关键字,若小于根结点的关键字,则插入左子树中,若大于根结点的关键字,则插入右子树中,且左、右子树均为二叉排序树) ,该二叉排序树的高度(层数)为 ( ) 。A. 6B. 5C. 4D. 3请帮忙给出正确答案和分析,谢谢!

当在二叉排序树中插入一个新结点时,若树中不存在与待插入结点的关键字相同的结点,且新结点的关键字小于根结点的关键字,则新结点将成为() A.左子树的叶子结点B.左子树的分支结点C.右子树的叶子结点D.右子树的分支结点

二叉排序树或者是一棵空树,或者是具有如下性质的二叉树:若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值;其左、右子树本身就是两棵二叉排序树。根据该定义,对一棵非空的二叉排序树进行(42)遍历,可得到一个结点元素的递增序列。A.先序(根、左、右)B.中序(左、根、右)C.后序(左、右、根)D.层序(从树根开始,按层次)

阅读以下说明和C代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 二叉查找树又称为二叉排序树,它或者是一棵空树,或者是具有如下性质的二叉树。 (1)若它的左子树非空,则左子树上所有结点的值均小于根结点的值。 (2)若它的右子树非空,则右子树上所有结点的值均大于根结点的值。 (3)左、右子树本身就是两棵二叉查找树。 二叉查找树是通过依次输入数据元素并把它们插入到二叉树的适当位置上构造起来的,具体的过程是:每读入一个元素,建立一个新结点,若二叉查找树非空,则将新结点的值与根结点的值相比较,如果小于根结点的值,则插入到左子树中,否则插入到右子树中;若二叉查找树为空,则新结点作为二叉查找树的根结点。 根据关键码序列{46,25,54,13,29,91}构造一个二叉查找树的过程如图4-1所示。设二叉查找树采用二叉链表存储,结点类型定义如下: typedef int KeyType; typedef struct BSTNode{ KeyType key; struct BSTNode *left,*right; }BSTNode,*BSTree; 图4-1(g)所示二叉查找树的二叉链表表示如图4-2所示。图4-2 函数int InsertBST(BSTree *rootptr,KeyType kword)功能是将关键码kword插入到由rootptr指示出根结点的二叉查找树中,若插入成功,函数返回1,否则返回0。【C代码】 int lnsertBST(BSTree*rootptr,KeyType kword) /*在二叉查找树中插入一个键值为kword的结点,若插入成功返回1,否则返回0; *rootptr为二叉查找树根结点的指针 */ { BSTree p,father; (1) ; /*将father初始化为空指针*/ p=*rootptr; /*p指示二叉查找树的根节点*/ while(p (2) ){ /*在二叉查找树中查找键值kword的结点*/ father=p; if(kword<p->key) p=p->left; else p=p->right; } if( (3) )return 0; /*二叉查找树中已包含键值kword,插入失败*/ p=(BSTree)malloc( (4) ); /*创建新结点用来保存键值kword*/ If(!p)return 0; /*创建新结点失败*/ p->key=kword; p->left=NULL; p->right=NULL; If(!father) (5) =p; /*二叉查找树为空树时新结点作为树根插入*/ else if(kword<father->key) (6) ; /*作为左孩子结点插入*/ else (7) ; /*作右孩子结点插入*/ return 1; }/*InsertBST*/

阅读以下说明和C代码,填补代码中的空缺,将解答填入答题纸的对应栏内。【说明】二叉查找树又称为二叉排序树,它或者是一棵空树,或者是具有如下性质的二叉树。(1)若它的左子树非空,则左子树上所有结点的值均小于根结点的值。(2)若它的右子树非空,则右子树上所有结点的值均大于根结点的值。(3)左、右子树本身就是两棵二叉查找树。二叉查找树是通过依次输入数据元素并把它们插入到二叉树的适当位置上构造起来的,具体的过程是:每读入一个元素,建立一个新结点,若二叉查找树非空,则将新结点的值与根结点的值相比较,如果小于根结点的值,则插入到左子树中,否则插入到右子树中;若二叉查找树为空,则新结点作为二叉查找树的根结点。根据关键码序列{46,25,54,13,29,91}构造一个二叉查找树的过程如图4-1所示。设二叉查找树采用二叉链表存储,结点类型定义如下:typedef int KeyType;typedef struct BSTNode{KeyType key;struct BSTNode *left,*right;}BSTNode,*BSTree;图4-1(g)所示二叉查找树的二叉链表表示如图4-2所示。函数int InsertBST(BSTree *rootptr,KeyType kword)功能是将关键码kword插入到由rootptr指示出根结点的二叉查找树中,若插入成功,函数返回1,否则返回0。【C代码】int lnsertBST(BSTree*rootptr,KeyType kword)/*在二叉查找树中插入一个键值为kword的结点,若插入成功返回1,否则返回0;*rootptr为二叉查找树根结点的指针*/{BSTree p,father;(1) /*将father初始化为空指针*/p=*rootptr; /*p指示二叉查找树的根节点*/while(pif(kword<p->key)p=p->left;elsep=p->right;}if((3))return 0; /*二叉查找树中已包含键值kword,插入失败*/ p=(BSTree)malloc((4)); /*创建新结点用来保存键值kword*/If(!p)return 0; /*创建新结点失败*/p->key=kword;p->left=NULL;p->right=NULL; If(!father)(5) =p; /*二叉查找树为空树时新结点作为树根插入*/elseif(kword<father->key)(6);/*作为左孩子结点插入*/else(7);/*作右孩子结点插入*/return 1;}/*InsertBST*/

平衡二叉树中根结点的平衡因子是1,若新结点插入到根的左子树上,则必定需要调整。

二叉排序树,若左子树不空,则左子树上所有结点的值均小于它的根结点的值。

二叉排序树或者是一棵空树;或者是具有如下特性的二叉树:(1)若它的左子树不空,则左子树上所有结点的值均小于根结点的值;(2)若它的右子树不空,则右子树上所有结点的值均大于根结点的值。()