设I为整数集合,S={x|x2<30,x∈I},T={x|x是素数,x<20},R={1,3,5}。(S∩ T)∪R=A.{1,2,3, 5}B.фC.{0}D.{1,3,5,7, 11, 13, 17, 19}
设I为整数集合,S={x|x2<30,x∈I},T={x|x是素数,x<20},R={1,3,5}。(S∩ T)∪R=
A.{1,2,3, 5}
B.ф
C.{0}
D.{1,3,5,7, 11, 13, 17, 19}
相关考题:
阅读以下函数说明和C语言函数,将应填入(n)处的字句写在对应栏内。【函数2.1】void sort(char *s,int num){int i,j--num;char t;while(j-->1)for(i=0;i<j;i++)if(s[i]>s[i+1]){t=s[i];s[i]=s[i+1];s[i+1]=t;}void main(){char *s="CEAedea";sort(s,5);printf("%s",s);}上述程序的结果是(1)【函数2.2】void main(){ union {int ig[6];Char s[12];} try;try. ig[0]=0x4542; try.ig[1]=0x2049;try. ig[2]=0x494a; try.ig[3]=0x474e;try. ig[4]=0x0a21; try.ig[5]=0x0000;pintf("%s",try, s);}上述程序的结果是(2)【函数2.3】void main(){ char *letter[5]= { "ab","efgh","ijk","nmop","st"};char **p;int i;p=letter;for(i=0;i<4;i++) .printf("%s",p[i]);}上述程序的结果是(3)【函数2.4】main(){int i=4,j=6,k=8,*p=I,*q=j,*r=k;int x,y,z;x=p==i;y=3*-*p/(*q)+7;z=*(r=k)=*p**q;printf("x=%d,y=%d,z=%d",x,y,z);}上述程序的结果是(4)【函数2.5】int a[]={5,4,3,2,1 };void main(){int i;int f=a[0];int x=2;for(i=0;i<5;i++)f+=f*x+a[i];printf("%d",f);}上述程序的结果是(5)
已知线性规划模型(I)和(II)分别为 (I) min z=c1x1+c2x2 (II) max z=2x1+3x2 s.t. 4x1+3x2<=12 s.t. 4x1+3x2<=12 x1+2x2<=6 x1+2x2<=6 x1,x2>=0 x1,x2>=0 (I)和(II)具有相同最优解,则 c1/c2 的值正确的应有()。A.0.6B.1.0C.1.1D.1.5
以下哪个是整数规划问题:A.max z=3x1+2x2 s.t 3x1+4x2≤10 4x1+3x2≤12 x1,x2≥0,且x1,x2均为整数B.max z=3x1+2x2 s.t 3x1+4x2≤10 4x1+3x2≤12 x1,x2≥0C.max z=3x1+2x2 s.t 3x1+4x2≤10 4x1+3x2≤12 x1,x2≥0,且x1为整数D.max z=3x1+2x2 s.t 3x1+4x2≤10 4x1+3x2≤12 x1,x2≥0,且x2均为整数
以下整数规划问题的最优解为: max z=7x1+9x2 s.t 3x1+4x2≤27 x1+3x2≤120 x1,x2≥0,且x1,x2均为整数A.x1=9;x2=0B.x1=9;x2=1C.x1=8;x2=2D.x1=8;x2=1
某线性规划问题的标准型如下所示: max 6x1+30x2+25x3 s.t. 3x1+x2+s1=40 2x2+x3+s2=50 2x1+x 2-x3+s3=20 x1,x2,x3,s1,s2,s3 ≥0A.(10,0,20,10,30,20)B.(0,0,-20,40,70,0)C.(0,0,0,40,50,20)D.(0,0,0,40,-40,20)
2、以下整数规划问题的最优解为: max z=7x1+9x2 s.t 3x1+4x2≤27 x1+3x2≤120 x1,x2≥0,且x1,x2均为整数A.x1=9;x2=0B.x1=9;x2=1C.x1=8;x2=2D.x1=8;x2=1