问答题假设货币需求为L=0.2y,货币供给量m=200,c=90+0.8 yd,t=50,i=140-5 r,g=50(单位都是亿美元)。 (1)求IS和LM曲线;求均衡收入、利率和投资; (2)其他情况不变,g增加20亿美元,均衡收入、利率和投资各为多少? (3)是否存在挤出效应?
问答题
假设货币需求为L=0.2y,货币供给量m=200,c=90+0.8 yd,t=50,i=140-5 r,g=50(单位都是亿美元)。 (1)求IS和LM曲线;求均衡收入、利率和投资; (2)其他情况不变,g增加20亿美元,均衡收入、利率和投资各为多少? (3)是否存在挤出效应?
参考解析
解析:
暂无解析
相关考题:
计算分析题:假定货币需求为L=0.2Y,货币供给M=200,消费C=90+0.8Yd,税收T=50,投资I=140-5r,政府支出G=50,求:(1)均衡收入、利率和投资;(2)若其他条件不变,政府支出G增加20,那么收入、利率和投资有什么变化?(3)是否存在“挤出效应”?
假设一封闭经济体,在产品市场上,消费函数为C=95+0.75Yd,投资函数为I=300 – 4000r,政府购买G=400,税收函数为T=100+0.2Y,总产出函数为Y=15N – 0.01N2。在货币市场上,货币需求函数为L=0.2Y – 2000r,名义货币供给量M=200.在劳动市场上,劳动的供给函数为Ns=60+5W/P,劳动的需求函数为Nd=180 – 10W/P。其中,Yd为个人可支配收入,r为利率,Y国民收入,N为劳动投入,W为名义工资水平,P为价格水平。 推导出总需求函数。
若一个经济的基本关系如下,利用IS-1M模型回答问题: C=50+0.8YD;YD=Y – TA;TA=0.25Y;G=20;NX=50 – 0.05Y;I=400 – 200i + 0.2Y;M=600;P=1;L=0.5Y+200 – 100i,其中Y、C、I、G、NX、YD、TA、M和L分别代表国民收入、消费、投资、政府购买、净出口、可支配收入、总税收、货币供给量和货币需求量,单位为亿元;i代表名义利率,单位为%,试求: 此时消费量和投资量会有怎样的变化?
假设一封闭经济体,在产品市场上,消费函数为C=95+0.75Yd,投资函数为I=300 – 4000r,政府购买G=400,税收函数为T=100+0.2Y,总产出函数为Y=15N – 0.01N2。在货币市场上,货币需求函数为L=0.2Y – 2000r,名义货币供给量M=200.在劳动市场上,劳动的供给函数为Ns=60+5W/P,劳动的需求函数为Nd=180 – 10W/P。其中,Yd为个人可支配收入,r为利率,Y国民收入,N为劳动投入,W为名义工资水平,P为价格水平。 假设工资和价格水平是可以灵活调整的,求解总供给函数。
若一个经济的基本关系如下,利用IS-1M模型回答问题: C=50+0.8YD;YD=Y – TA;TA=0.25Y;G=20;NX=50 – 0.05Y;I=400 – 200i + 0.2Y;M=600;P=1;L=0.5Y+200 – 100i,其中Y、C、I、G、NX、YD、TA、M和L分别代表国民收入、消费、投资、政府购买、净出口、可支配收入、总税收、货币供给量和货币需求量,单位为亿元;i代表名义利率,单位为%,试求: 宏观经济均衡时的消费和投资量分别是多少?
考虑如下经济模型: 商品市场: C=100+0.9(Y-T);I=190-10r;NX=-200;G=200;T=100货币市场: M=2000;P=5;L(Y,r)=Y-100r其中C为消费,Y为总产出,T为税收,I为投资,r为利率,NX为净出口,G为政府支出,M为货币供给,P为价格水平,L为货币需求。 推导出IS和LM方程,并计算均衡状态下的产出Y和利率r
若一个经济的基本关系如下,利用IS-1M模型回答问题: C=50+0.8YD;YD=Y – TA;TA=0.25Y;G=20;NX=50 – 0.05Y;I=400 – 200i + 0.2Y;M=600;P=1;L=0.5Y+200 – 100i,其中Y、C、I、G、NX、YD、TA、M和L分别代表国民收入、消费、投资、政府购买、净出口、可支配收入、总税收、货币供给量和货币需求量,单位为亿元;i代表名义利率,单位为%,试求: 如果政府采取适应性货币政策,在政府支出增加时保持利率不变,名义货币供给量应增加多少?
假设某一宏观经济由下列关系和数据描述: 消费曲线C= 40 +0.8Yd,其中,C为消费,Yd为可支配收入;货币需求曲线L=0.2Y -5r,其中,L为货币需求,y为收入,r为利息率;投资曲线1= 140 - lOr,政府购买G=50,政府税收为T=0.2Y,名义货币供给为M= 200,价格水平P=2。 (1)求当经济中产品市场和货币市场同时均衡时的收入、利息率、储蓄和投资。 (2)如果政府购买G增加50时,求政府购买乘数。
某经济存在以下经济关系:消费C=800+0.8Yd,税收T=0.25Y,政府支出200,投资I=200-50r,货币需求L=0.4Y-100r,名义货币供给900。要求: (1)总需求函数; (2)P=I是的收入和利润。
某三部门经济的消费函数为C=80+0.8YD,投资函数为I=20-5r,货币需求函数为L=0.4Y-10r,税收T=0.25Y,政府购买支出为G=20名义货币供给量M=90,充分就业的国民收入为285。如果通过变动货币购买量来实现充分就业,则需要如何变动货币供给量?
假设消费函数C=400+0.8Y,投资函数I=300-50r,政府购买G=200,货币需求函数L=300+0.5Y-100r,实际货币供给M=1500(单位均为亿元),试求: (1)两个市场同时均衡时的均衡收入。 (2)财政政策乘数和货币政策乘数。
假设某经济体系的消费函数C=600+0.8Y,投资函数I=400-50r,政府购买G=200(亿美元),实际货币需求函数L=250+0.5Y-125r,货币供给Ms=1250(亿美元),价格水平P=1。若用增加货币供给实现充分就业,要增加多少货币供给量?
假设货币需求为L=0.2y,货币供给量m=200,c=90+0.8 yd,t=50,i=140-5 r,g=50(单位都是亿美元)。 (1)求IS和LM曲线;求均衡收入、利率和投资; (2)其他情况不变,g增加20亿美元,均衡收入、利率和投资各为多少? (3)是否存在挤出效应?
假定货币需求为L=0.2Y,货币供给为M=200,消费C=90+0.8Yd,税收T=50,投资I=140-5r,政府支出G=50。若其他情况不变,政府支出G增加20,那么收入、利率和投资有什么变化?
假定货币需求L=0.2Y,实际货币供给为M/P=200,消费C=90+0.8Yd,税收T=50,投资I=140-5r,财政支出G=50。 (1)导出IS-LM方程,求均衡收入、利率和投资 (2)若其他情况不便,政府支出G增加20,收入、利率和投资有什么变化? (3)是否存在“挤出效应”?
问答题假设货币需求L=0.2Y-10r,货币供给M=200,消费C=60+0.8Yd,税收T=100,投资I=150,政府支出G=100,求: (1)求IS、LM方程以及均衡收入Y、利率r和投资I; (2)政府支出从100增加到120时,均衡收入、利率和投资会有什么变化? (3)是否存在“挤出效应”?为什么?
问答题假定货币需求L=0.2Y,货币供给M=240,消费函数C=145+0.75Yd,税收T=60,投资函数I=160-5r,政府支出G=80.试求: (1)IS、LM方程和均衡收入、利率、投资。 (2)若其他情况不变,政府支出G变为100.则均衡收入、利率、投资又为多少? (3)是否存在挤出效应?
问答题假定货币需求为L=0.2Y,货币供给为M=200,消费C=90+0.8Yd,税收T=50,投资I=140-5r,政府支出G=50。若其他情况不变,政府支出G增加20,那么收入、利率和投资有什么变化?
问答题假设某经济体系的消费函数C=600+0.8Y,投资函数I=400-50r,政府购买G=200(亿美元),实际货币需求函数L=250+0.5Y-125r,货币供给Ms=1250(亿美元),价格水平P=1。若用增加货币供给实现充分就业,要增加多少货币供给量?
问答题假设消费函数C=400+0.8Y,投资函数I=300-50r,政府购买G=200,货币需求函数L=300+0.5Y-100r,实际货币供给M=1500(单位均为亿元),试求: (1)两个市场同时均衡时的均衡收入。 (2)财政政策乘数和货币政策乘数。
问答题在四部门经济中,C=100+0.9YD,YD=(1-t)Y,t=0.2,G=200,I=200-500r,净出口函数NX=100-0.12Y-500r,货币需求函数L=0.8Y-2000r,名义货币供给量M=800,求AD函数。
问答题某经济存在以下经济关系:消费C=800+0.8Yd,税收T=0.25Y,政府支出200,投资I=200-50r,货币需求L=0.4Y-100r,名义货币供给900。要求: (1)总需求函数; (2)P=I是的收入和利润。
问答题某三部门经济的消费函数为C=80+0.8YD,投资函数为I=20-5r,货币需求函数为L=0.4Y-10r,税收T=0.25Y,政府购买支出为G=20名义货币供给量M=90,充分就业的国民收入为285。如果通过变动货币购买量来实现充分就业,则需要如何变动货币供给量?