不定项题A接受原假设,拒绝备择假设B拒绝原假设,接受备择假设CD在95%的置信水平下,居住面积对居民家庭电力消耗量的影响是显著的
不定项题
A
接受原假设,拒绝备择假设
B
拒绝原假设,接受备择假设
C
D
在95%的置信水平下,居住面积对居民家庭电力消耗量的影响是显著的
参考解析
解析:
相关考题:
城镇居民家庭可支配收入计算公式为( )。A.城镇居民家庭可支配收入=家庭总收入–交纳所得税–个人交纳的社会保障支出–记账补贴B.城镇居民家庭可支配收入=家庭总收入–交纳所得税–个人交纳的社会保障支出C.城镇居民家庭可支配收入=家庭总收入–交纳所得税D.城镇居民家庭可支配收入=家庭总收入–个人交纳的税费总额
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下 请根据上述结果,从下列备选答案中选出正确答案。 回归系数β2=0.2562的经济意义为()。A.我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时B.在可支配收人不变的情况下,我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时C.在可支配收入不变的情况下,我国居民家庭居住面积每减少1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时D.我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均减少0.2562千瓦小时
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。根据计算上述回归方程式的多重判定系数为0.9235,其正确的含义是()。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量X1解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。对于多元线性回归模型,以下假设中正确的有()。A.因变量与自变量之间的关系为线性关系B.随机误差项的均值为1C.随机误差项之间是不独立的D.随机误差项的方差是常数
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下 请根据上述结果,从下列备选答案中选出正确答案。 根据样本观测值和估计值计算回归系数β2的t统计量,其值为t=8.925,根据显著性水平(a=0.05)与自由度,由t分布表查得t分布的右侧临界值为2.431,因此,可以得出的结论有()。
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下 请根据上述结果,从下列备选答案中选出正确答案。 根据计算上述回归方程式的多重判定系数为0.9235,其正确的含义是()。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量置解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。检验回归方程是否显著,正确的假设是()。
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下 请根据上述结果,从下列备选答案中选出正确答案。 检验回归方程是否显著,正确的假设是()。A.H0:β1=β2=0;H1:β1≠β2≠0B.H0:β1=β2≠0;H1:β1≠β2=0C.H0:β1≠β2≠0;H1:β1=β2≠0D.H0:β1=β2=0;H1:β1至少有一个不为零
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下 请根据上述结果,从下列备选答案中选出正确答案。 对于多元线性回归模型,以下假设中正确的有()。A.因变量与自变量之间的关系为线性关系B.随机误差项的均值为1C.随机误差项之间是不独立的D.随机误差项的方差是常数
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(Xl,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。根据样本观测值和估计值计算回归系数β2的t统计量,其值为f=8.925,根据显著性水平(α=0.05)与自由度,由t分布表查得t分布的右侧临界值为2.431,因此,可以得出的结论有()。A.接受原假设,拒绝备择假设B.拒绝原假设,接受备择假设C.在95%的置信水平下,图.png是由β2 =0这样的总体产生的D.在95%的置信水平下,居住面积对居民家庭电力消耗量的影响是显著的
(一)将我国31个省(自治区、直辖市)某年度城镇居民家庭人均食品消费支出(y,单位:元)、城镇居民家庭人均可支配收入(x1,单位:元)和食品类居民消费价格指数(x2,单位:上年=100)进行回归分析,得到如表1~表3所示的输出结果:表 1 回归方程的输出结果描述城镇居民家庭人均食品消费支出与城镇居民家庭人均可支配收入之间关系适合的图形是( )。A.直方图 B.折线图C.散点图 D.雷达图
(一)将我国31个省(自治区、直辖市)某年度城镇居民家庭人均食品消费支出(y,单位:元)、城镇居民家庭人均可支配收入(x1,单位:元)和食品类居民消费价格指数(x2,单位:上年=100)进行回归分析,得到如表1~表3所示的输出结果:表 1 回归方程的输出结果根据表1~表3的输出结果可以得出( )。A.回归方程为:B.城镇居民家庭人均食品消费支出与城镇居民家庭人均可支配收入和食品类居民消费价格指数的总体相关程度为87.7%C.多元回归分析中拟合优度大小应根据判定系数( )来衡量D.多元回归分析中拟合优度大小应根据调整后的判定系数( )来衡量
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(Xl,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。检验回归方程是否显著,正确的假设是()。A.H0: β1 =β2 =0;H1: β1≠β2 ≠0B.H0: β1 =β2 ≠0;H1: β1≠β2 =0C.H0: β1 ≠β2 ≠0;H1: β1=β2 ≠0D.H0: β1 =β2 =0;H1: β1至少有一个不为零
(一)将我国31个省(自治区、直辖市)某年度城镇居民家庭人均食品消费支出(y,单位:元)、城镇居民家庭人均可支配收入(x1,单位:元)和食品类居民消费价格指数(x2,单位:上年=100)进行回归分析,得到如表1~表3所示的输出结果:表 1 回归方程的输出结果城镇居民家庭人均食品消费支出、城镇居民家庭人均可支配收入和食品类居民消费价格指数数据属于( )。A.一手数据 B.二手数据C.实验数据 D.定性数据
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(Xl,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。回归系数β2=0.2562的经济意义为()。A.我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0. 2562千瓦小时B.在可支配收入不变的情况下,我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时C.在可支配收入不变的情况下,我国居民家庭居住面积每减少1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时D.我国居民家庭居住面积每增加l平方米,居民家庭电力消耗量平均减少0.2562千瓦小时
(一)将我国31个省(自治区、直辖市)某年度城镇居民家庭人均食品消费支出(y,单位:元)、城镇居民家庭人均可支配收入(x1,单位:元)和食品类居民消费价格指数(x2,单位:上年=100)进行回归分析,得到如表1~表3所示的输出结果:表 1 回归方程的输出结果如果 ,根据表3,下列说法正确的是( )。A.城镇居民家庭人均可支配收入对城镇居民家庭人均食品消费支出的线性关系 显著B.城镇居民家庭人均可支配收入对城镇居民家庭人均食品消费支出的线性关系不显著C.食品类居民消费价格指数对城镇居民家庭人均食品消费支出的线性关系显著D.食品类居民消费价格指数对城镇居民家庭人均食品消费支出的线性关系不显著
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(Xl,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。对于多元线性回归模型,以下假设中正确的有()。A.因变量与自变量之间的关系为线性关系B.随机误差项的均值为1C.随机误差项之间是不独立的D.随机误差项的方差是常数
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(Xl,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。根据计算上述回归方程式的多重判定系数为0.9235,其正确的含义是()。A.在Y的总变差中,有92.35%可以由解释变量Xl和X2解释B.在Y的总变差中,有92.35%可以由解释变量Xl解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量Xl和X2决定的
根据下面资料,回答79-82题 为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(Y,单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示: 据此回答以下题目。 回归系数β2的经济意义为( )A.我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时B.在可支配收入不变的情况下,我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时C.在可支配收入不变的情况下,我国居民家庭居住面积每减少1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时D.我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均减少0.2562.千瓦小时
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(Y,单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示: 根据样本观测值和估计值计算回归系数β2的t统计量,其值为t=8.925,根据显著性水平(a=0.05)与自由度,由t分布表查得t分布的右侧临界值为2.431,因此,可以得出的结论有( )。
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(Y,单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示: 检验回归方程是否显著,正确的假设是()。
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(Y,单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示: 根据上述回归方程式计算的多重判定系数为0.9235,其正确的含义是( )。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量X1解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的
为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(Y,单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示: 回归系数β2的经济意义为()。A.我国居民家庭居住面积每增加l平方米,居民家庭电力消耗量平均增加0.2562千瓦小时B.在可支配收入不变的情况下,我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时C.在可支配收入不变的情况下,我国居民家庭居住面积每减少1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时D.我国居民家庭居住面积每增加l平方米,居民家庭电力消耗量平均减少0.2562千瓦小时
已知2007年我国城镇居民家庭消费性支出为9997.47元,农村居民家庭生活消费性支出为3223.85元,城镇居民家庭食品消费支出为3628.03元,农村居民家庭食品消费支出为1388.99元。根据以上资料,试计算:2007年我国城镇居民家庭恩格尔系数为()A、36%B、30%C、36.3%D、35.1%
不定项题A我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0. 256 2千瓦小时B在可支配收入不变的情况下,我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0. 256 2千瓦小时C在可支配收入不变的情况下,我国居民家庭居住面积每减少1平方米,居民家庭电力消耗量平均增加0. 256 2千瓦小时D我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均减少0. 256 2千瓦小时
多选题回归系数β2=0.2562的经济意义为( )。A我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时B在其他条件不变的情况下,我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时C在其他条件不变的情况下,我国居民家庭居住面积每减少1平方米,居民家庭电力消耗量平均增加0.2562千瓦小时D我国居民家庭居住面积每增加1平方米,居民家庭电力消耗量平均减少0.2562千瓦小时