结构施工图中“图纸目录"的图号是()。A、J—0B、J一1C、G—0D、G一1
结构施工图中“图纸目录"的图号是()。
- A、J—0
- B、J一1
- C、G—0
- D、G一1
相关考题:
利用动态规划方法求解每对节点之间的最短路径问题(all pairs shortest path problem)时,设有向图 G=<V,E>共有n个节点,节点编号1~n,设C是G的成本邻接矩阵,用Dk(I,j)即为图G中节点i到j并且不经过编号比k还大的节点的最短路径的长度(Dn(i,j)即为图G中节点i到j的最短路径长度),则求解该问题的递推关系式为(62)。A.Dk(I,j)=Dk-1(I,j)+C(I,j)B.Dk(I,j)=Dk-1(I,k)+Dk-1(k,j)C.Dk(I,j)=min{Dk-1(I,j),Dk-1(I,j)+C(I,j)}D.Dk(I,j)=min{Dk-1(I,j),Dk-1(I,K)+Dk-1(k,j)}
阅读下列函数说明和c代码,将应填入(n)处的字句写在答题纸的对应栏内。【说明】函数int Toplogical(Linded WDipaph G)的功能是对图G中的顶点进行拓扑排序,并返回关键路径的长度。其中图G表示一个具有n个顶点的AOE-网,图中顶点从1~n依次编号,图G的存储结构采用邻接表表示,其数据类型定义如下:typedefstruct Gnode{ /* 邻接表的表结点类型*/iht adjvex; /* 邻接顶点编号*/iht weight; /* 弧上的权值*/street Gnode *nextarc; /* 指示下一个弧的结点*/}Gnode;typedef struct Adjlist{ /* 邻接表的头结点类型*/char vdata; /*顶点的数据信息*/struct Gnode *Firstadj; /* 指向邻接表的第一个表结点*/}Adjlist;typedef street LinkedWDigraph{ /* 图的类型*/int n, e; /* 图中顶点个数和边数*/struct Adjlist *head; /*指向图中第一个顶点的邻接表的头结点 */} LinkedWDigraph;例如,某AOE-网如图5-1所示,其邻接表存储结构如图5-2所示。【函数】iht Toplogical(LinkedWDigraph G){ Gnode *p;intj, w, top = 0;iht *Stack, *ye, *indegree;ye = (int *)malloe((G.n+1) * sizeof(int));indegree = (int *)malloc((G.n+1)*sizeof(int)); /* 存储网中各顶点的入度*/Stack = (int *)malloe((G.n+1)*sizeof(int)); /* 存储入度为0的顶点的编号*/if(!ve||!indegree || !Stack) exit(0);for (j = 1;j <= G.n;j++) {ve[j] = 0; indegree[j]= 0;}/*for*/for(j= 1;j=G.n;j++) { /* 求网中各顶点的入度*/p = G.head[j].Firstadj;while (p) {(1); p = p→nextarc;}/*while*/}/*for*/for (j = 1; j <= G.n; j++) /*求网中入度为0的顶点并保存其编号*/if (!indegree[j]) Stack[++top] =j;while (top > 0) {w=(2);printf("%e ", G.head[w].vdata);p = G.head[w].Firstadj;while (p) {(3);if ( !indegree [p→adjvex])Staek[++top] = p→adjvex;if( (4))ve[p→adjvex] = ve[w] + p→weight;p = p→nextarc;}/* while */}/* while */ return (5); }/*Toplogieal*/
int I=1, j=0 switch(i) { case 2: j+=6; case 4: j+=1; default: j +=2; case 0: j +=4; } What is the value of j at line 16?()A、 0B、 1C、 2D、 4E、 6
建筑施工图的一般排序为()A、图纸目录、总说明、建筑施工图、结构施工图、设备(水、暖、电)施工图B、总说明、图纸目录、建筑施工图、结构施工图、设备(水、暖、电)施工图C、图纸目录、总说明、建施、结施、设施D、图纸目录、总说明、建施、设施、结施
单选题结构施工图中“图纸目录"的图号是()。AJ—0BJ一1CG—0DG一1