β-构型的葡萄糖苷中,其氢核磁共振谱的耦合常数为A.J=160HzB.J=2~3.5HzC.J=3~4HzD.J=6~9HzE.J=8~9Hz

β-构型的葡萄糖苷中,其氢核磁共振谱的耦合常数为

A.J=160Hz
B.J=2~3.5Hz
C.J=3~4Hz
D.J=6~9Hz
E.J=8~9Hz

参考解析

解析:

相关考题:

不能利用氢谱中糖的端基质子的偶合常数判断苷键构型的糖是()。A.D-葡萄糖B.D-半乳糖C.D-木糖D.L-鼠李糖E.D-葡萄糖醛酸

在1H-MNR中谱中能用端基氢偶合常数判断苷键构型的糖是( )A.鼠李糖B.甘露糖C.半乳糖D.葡萄糖E.阿拉伯糖

氢核磁共振谱的常数是( )。A.化学位移B.分子离子峰C.偶合常数D.碎片峰E.保留时间

在β-谷甾醇-3-O-β-D-葡萄糖的氢核磁共振谱中,能确定其苷键构型为β构的端基氢数据是( )。A.δ:3.2ppmB.δ:5.1ppmC.J:8HzD.J:3.5HzE.δ:3.2(1H,d,J=3.5Hz)

β-构型的葡萄糖苷中,其氢核磁共振谱的偶合常数是( )。A、J=2~3.5HzB、J=8~9HzC、J=6~9HzD、J=3~4HzE、J=160Hz

下列各项,不能利用氢谱中糖的端基质子的偶合常数判断苷键构型的糖是A、L-鼠李糖B、D-半乳糖C、D-木糖D、D-葡萄糖E、D-葡萄糖醛酸

用核磁共振氢谱确定化合物结构不能给出的信息是()A.氢的数目B.氢的位置C.碳的数目D.氢的偶合常数E.氢的化学位移

在苷的1H-NMR谱中,能够确定葡萄糖苷键构型的参数是:()。 A、H-1的化学位移B、H-1的偶合常数C、H-6的化学位移D、C-1的化学位移E、C-1的偶合常数

苷的1H-NMR谱中糖的端基质子的耦合常数可用于确定()A、糖的种类B、苷元的种类C、苷的分子量D、单糖间连接位置E、苷键的构型

在碳谱中,13C-1H会发生耦合作用,但是13C-1H的耦合常数远比1H-1H之间的耦合常数小。

用于确定分子中的共轭体系()A、质谱B、紫外光谱C、红外光谱D、氢核磁共振谱E、碳核磁共振谱

一香豆素单糖苷经1H-NMR测试其端基氢质子的δ为5.53ppm(J=8Hz), 经酸水解得葡萄糖,其苷键端基的构型为()

用于确定H原子的数目及化学环境()A、质谱B、紫外光谱C、红外光谱D、氢核磁共振谱E、碳核磁共振谱

用核磁共振碳谱确定化合物结构不能给出的信息是()A、氢的数目B、碳的数目C、碳的位置D、碳的化学位移E、碳的偶合常数

用核磁共振氢谱确定化合物结构不能给出的信息是()A、碳的数目B、氢的数目C、氢的位置D、氢的化学位移E、氢的偶合常数

D-甘露糖苷,可以用1H-NMR中偶合常数的大小确定苷键构型。

氢核磁共振谱所提供的数据是(),(),()。

确定化合物的分子量和分子式可用()A、紫外光谱B、红外光谱C、核磁共振氢谱D、核磁共振碳谱E、质谱

填空题一香豆素单糖苷经1H-NMR测试其端基氢质子的δ为5.53ppm(J=8Hz), 经酸水解得葡萄糖,其苷键端基的构型为()

单选题确定化合物的分子量和分子式可用()A紫外光谱B红外光谱C核磁共振氢谱D核磁共振碳谱E质谱

单选题用于确定H原子的数目及化学环境()A质谱B紫外光谱C红外光谱D氢核磁共振谱E碳核磁共振谱

判断题在碳谱中,13C-1H会发生耦合作用,但是13C-1H的耦合常数远比1H-1H之间的耦合常数小。A对B错

填空题氢核磁共振谱所提供的数据是(),(),()。

多选题确定苷键构型的方法为()A利用Klyne经验公式计算B1H-NMR中,端基氢偶合常数J=6~8Hz为β-构型,J=3~4Hz为α-构型。C1H-NMR中,端基氢偶合常数J=6~8Hz为α-构型,J=3~4Hz为β-构型。D13C-NMR中,端基碳与氢偶合常数J=160Hz为β-构型,J=170Hz为α-构型。E13C-NMR中,端基碳与氢偶合常数J=160Hz为α-构型,J=170Hz为β-构型。

单选题用于确定分子中的共轭体系()A质谱B紫外光谱C红外光谱D氢核磁共振谱E碳核磁共振谱

单选题苷的1H-NMR谱中糖的端基质子的耦合常数可用于确定()A糖的种类B苷元的种类C苷的分子量D单糖间连接位置E苷键的构型

单选题用核磁共振氢谱确定化合物结构不能给出的信息是()A碳的数目B氢的数目C氢的位置D氢的化学位移E氢的偶合常数