曲柄OA在如图30-9所示瞬时以ω的角速度绕轴O转动,并带动直角曲杆O1BC在如图所示平面内运动。若取套筒A为动点,杆O1BC为动系,则牵连速度大小为(  )。

曲柄OA在如图30-9所示瞬时以ω的角速度绕轴O转动,并带动直角曲杆O1BC在如图所示平面内运动。若取套筒A为动点,杆O1BC为动系,则牵连速度大小为(  )。


参考解析

解析:{图}

相关考题:

杆OA绕固定轴O转动,长为l,某瞬时杆端A点的加速度a如题52图所示。则该瞬时OA的角速度及角加速度为(  )。

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

一平面机构曲柄长OA=r,以角速度ω0绕O轴逆时针向转动,在图示瞬时,摇杆O1N水平,连杆NK铅直。连杆上有一点D,其位置为DK=1/3NK,则此时D点的速度大小vD为:

曲柄机构在其连杆AB的中点C与CD杆铰接,而CD杆又与DF杆铰接,DE杆可绕E点转动。曲柄OA以角速度ω= 8rad/s绕O点逆时针向转动。且OA = 25cm,DE=100cm。在图示瞬时,O、A、B三点共在一水平线上,B、E两点在同一铅直线上,∠CDE=90°,则此时DE杆角速度ωDE的大小和方向为:

均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:

杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度分别为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:

杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。

如图,半径为R的圆轮以匀角速度作纯滚动,带动AB杆绕B作定轴转动,D是轮与杆的接触点,如图所示。若取轮心C为动点,杆BA为动坐标系,则动点的牵连速度为(  )。

杆OA = l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度为:

均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。

如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。A.0.5B.1.0C.1.5D.2.0

图示凸轮机构,凸轮以等角速度ω绕通过O点且垂直于图示平面的轴转动,从而推动杆AB运动。已知偏心圆弧凸轮的偏心距OC=e,凸轮的半径为r,动系固结在凸轮上,静系固结在地球上,则在图示位置()杆AB上的A点牵连速度的大小等于(  )。

杆OA绕固定轴0转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA 的角速度及角加速度为:

曲柄OA在如图30-9所示瞬时以ω的角速度绕轴O转动,并带动直角曲杆O1BC在如图所示平面内运动。若取套筒A为动点,杆O1BC为动系,则牵连速度大小为(  )。

均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:

均质杆OA长L,可在铅直平面内绕水平固定轴O转动。开始杆处在如图所示的稳定平衡位置。今欲使此杆转过1/4转而转到水平位置,应给予杆的另一端A点的速度vA的大小为:

如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。

均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

如图4-48所示直角弯杆OAB以匀角速度ω绕O轴转动,并带动小环M沿OD杆运动。已知OA=l,取小环M为动点,OAB杆为动系,当 φ =60°时,M点牵连加速度ae的大小为( )。

图4-49所示机构中,曲柄OA以匀角速度绕O轴转动,滚轮B沿水平面作纯滚动,如图4-48所示。己知OA=l, AB=2l,滚轮半径为r。在图示位置时,OA铅直,滚轮B的角速度为( )。

如图4-57所示质量为m、长为l 的杆OA以ω的角速度绕轴O转动,则其动量为 ( )。

杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图4-41所示,则该瞬时杆OA的角速度及角加速度为( )。