对下列4个序列用快速排序方法进行排序,以序列的第1个元素为基准进行划分。在第1趟划分过程中,元素移动次数最多的是()。A.70,75,82,90,23,16,10,68B.70,75,68,23,10,16,90,82C.82,75,70,16,10,90,68,23D.23,10,16,70,82,75,68,90
对下列4个序列用快速排序方法进行排序,以序列的第1个元素为基准进行划分。在第1趟划分过程中,元素移动次数最多的是()。
A.70,75,82,90,23,16,10,68
B.70,75,68,23,10,16,90,82
C.82,75,70,16,10,90,68,23
D.23,10,16,70,82,75,68,90
B.70,75,68,23,10,16,90,82
C.82,75,70,16,10,90,68,23
D.23,10,16,70,82,75,68,90
参考解析
解析:快速排序第一趟划分的方法是:将第1个元素放在最终排好序列的最终位置上,则在这个位置右边小于该元素值的元素都移到其左边,则在这个位置左边小于该元素值的元素都移到其右边。
相关考题:
● 以下关于快速排序算法的描述中,错误的是 (64) 。在快速排序过程中,需要设立基准元素并划分序列来进行排序。若序列由元素{12,25,30,45,52,67,85}构成,则初始排列为 (65) 时,排序效率最高(令序列的第一个元素为基准元素)。(64)A. 快速排序算法是不稳定的排序算法B. 快速排序算法在最坏情况下的时间复杂度为O(n1gn)C. 快速排序算法是一种分治算法D. 当输入数据基本有序时,快速排序算法具有最坏情况下的时间复杂度(65)A. 45,12,30,25,67,52,85B. 85,67,52,45,30,25,12C. 12,25,30,45,52,67,85D. 45,12,25,30,85,67,52
以下关于快速排序算法的描述中,错误的是( )。在快速排序过程中,需要设立基准元素并划分序列来进行排序。若序列由元素{12,25,30,45,52,67,85}构成,则初始排列为( )时,排序效率最高(令序列的第一个元素为基准元素)。A.快速排序算法是不稳定的排序算法B.快速排序算法在最坏情况下的时间复杂度为0(nlgn)C.快速排序算法是一种分治算法D.当输入数据基本有序时,快速排序算法具有最坏情况下的时间复杂度
对下列四个序列用快速排序方法进行排序,以序列的第一个元素为划分的基准。在第一趟划分过程中,元素的移动次数最多的序列是A.70,75,68,23,10,16,90,82B.82,75,70,16,10,90,68,23C.70,75,82,90,23,16,10,68D.23,10,16,70,82,75,68,90
对序列(70,75,82,90,23,16)用快速排序方法进行排序,以序列的第一个元素为划分的基准。在第一趟划分后数据元素的排列是( )。A.16,75,82,90,23,70B.16,70,82,90,23,75C.16,23,70,90,82,75D.16,23,82,90,70,75
对下列4个序列用快速排序方法进行排序,以序列的第一个元素为划分的基准。在第一趟划分过程中,元素移动次数最多的序列是______。A.70,75,82,90,23,16,10,68B. 70,75,65,23,10,16,90,82C. 82,75,70,16,10,90,68,23D. 23,10,16,70,82,75,68,90
通过设置基准(枢轴)元素将待排序的序列划分为两个子序列,使得其一个子序列的元素均不大于基准元素,另一个子序列的元素均不小于基准元素,然后再分别对两个子序列继续递归地进行相同思路的排序处理,这种排序方法称为()。 A、快速排序B、冒泡排序C、简单选择排序D、归并排序
阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面的程序利用快速排序中划分的思想在整数序列中找出第k小的元素(即将元素从小到大排序后,取第k个元素)。 对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数作为基准值,然后根据基准值进行划分,从而将待排序的序列划分为不大于基准值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和右子序列分别进行快速排序,最终得到非递减的有序序列。 例如,整数序列19, 12, 30, 11,7,53, 78, 25的第3小元素为12。整数序列19,12,7,30,11,11,7,53,78,25,7的第3小元素为7。 函数partition(int a[ ], int low,int high)以a[low]的值为基准,对a[low]、a[low+1]、、 a[high]进行划分,最后将该基准值放入a[i] (lowihigh),并使得a[low]、a[low+1]、,..、 A[i-1]都小于或等于a[i],而a[i+1]、a[i+2]、..、a[high]都大于a[i]。 函教findkthElem(int a[],int startIdx,int endIdx,inr k)在a[startIdx]、a[startIdx+1]、...、a[endIdx]中找出第k小的元素。【代码】 include stdio.h include stdlib.h Int partition(int a [ ],int low, int high) {//对 a[low..high]进行划分,使得a[low..i]中的元素都不大于a[i+1..high]中的元素。 int pivot=a[low]; //pivot表示基准元素 Int i=low,j=high; while(( 1) ){ While(ija[j]pivot)--j; a[i]=a[j] While(ija[i]=pivot)++i; a[j]=a[i] } (2) ; //基准元素定位 return i; } Int findkthElem(int a[ ],int startIdx,int endIdx, int k) {//整数序列存储在a[startldx..endldx]中,查找并返回第k小的元素。 if (startldx0 ||endIdx0 || startIdxendIdx || k1 ||k-1endIdx ||k-1startIdx) Return-1; //参数错误 if(startIdxendldx){ int loc=partition(a, startIdx, endldx); ∥进行划分,确定基准元素的位置 if (loc==k-1) ∥找到第k小的元素 return (3) ; if(k-1 loc) //继续在基准元素之前查找 return findkthElem(a, (4) ,k); else //继续在基准元素之后查找 return findkthElem(a, (5) ,k); } return a[startIdx]; } int main() { int i, k; int n; int a[] = {19, 12, 7, 30, 11, 11, 7, 53, 78, 25, 7}; n= sizeof(a)/sizeof(int) //计算序列中的元素个数 for (k=1;k<n+1;k++){ for(i=0;i<n;i++){ printf(%d/t,a[i]); } printf(\n); printf(elem %d=%d\n,k,findkthElem(a,0,n-1,k));//输出序列中第k小的元素 } return 0; }
阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。【说明】下面的程序利用快速排序中划分的思想在整数序列中找出第 k 小的元素(即 将元素从小到大排序后,取第 k 个元素)。对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数 作为基准值,然后根据基准值进行划分,从而将待排序的序列划分为不大于基准 值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和 右子序列分别进行快速排序,最终得到非递减的有序序列。例如,整数序列“19, 12, 30, 11,7,53, 78, 25"的第 3 小元素为 12。整数序列“19, 12,7,30, 11, 11,7,53. 78, 25, 7"的第 3 小元素为 7。函数 partition(int a[], int low,int high)以 a[low]的值为基准,对 a[low]、 a[low+l]、…、a[high]进行划分,最后将该基准值放入 a[i] (low≤i≤high),并 使得 a[low]、a[low+l]、,..、A[i-1]都小于或等于 a[i],而 a[i+l]、a[i+2]、..、 a[high]都大于 a[i]。函 教 findkthElem(int a[],int startIdx,int endIdx,inr k) 在 a[startIdx] 、 a[startIdx+1]、...、a[endIdx]中找出第 k 小的元素。【代码】#include #include Int partition(int a [],int low, int high){//对 a[low..high]进行划分,使得 a[low..i]中的元素都不大于 a[i+1..high]中的 元素。int pivot=a[low]; //pivot 表示基准元素 Int i=low,j=high;while(( 1) ){While(ipivot)--j; a[i]=a[ j] While(ipivot)++i; a[ j]=a[i]}(2) ; //基准元素定位 return i;}Int findkthElem(int a[],int startIdx,int endIdx, int k){//整数序列存储在 a[startldx..endldx]中,查找并返回第 k 小的元素。if (startldxendIdx || kendIdx||k-1 if (loc==k-1) ∥找到第 k 小的元素return (3) ;if(k-l 小的元素}return 0;}
通过设置基准(枢轴)元素将待排序的序列划分为两个子序列,使得其一个子序列的元素均不大于基准元素,另一个子序列的元素均不小于基准元素,然后再分别对两个子序列继续递归地进行相同思路的排序处理,这种排序方法称为( )。A.快速排序B.冒泡排序C.归并排序D.简单选择排序
对待排序的元素序列进行划分,将其分为左、右两个子序列,再对两个子序列施加同样的排序操作,直到子序列为空或只剩一个元素为止。这样的排序方法是()A、选择排序B、直接插入排序C、快速排序D、起泡排序
在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。A、随机选择一个元素作为划分基准B、取子序列的第一个元素作为划分基准C、用中位数的中位数方法寻找划分基准D、以上皆可行。但不同方法,算法复杂度上界可能不同
在寻找n个元素中第k小元素问题中,若使用快速排序算法思想,运用分治算法对n个元素进行划分,应如何选择划分基准?下面()答案解释最合理。A、随机选择一个元素作为划分基准B、取子序列的第一个元素作为划分基准C、用中位数的中位数方法寻找划分基准D、以上皆可行。但不同方法,算法复杂度上界可能不同
对下列四个序列进行快速排序,各以第一个元素为基准进行第一次划分,则在该次划分过程中需要移动元素次数最多的序列为()A、 1, 3, 5, 7, 9B、 9, 7, 5, 3, 1C、 5, 3, 1, 7, 9D、 5, 7, 9, 1, 3
单选题在寻找n个元素中第k小元素问题中,如使用快速排序算法思想,运用分治算法对n个元素进行划分,应如何选择划分基准?下面()答案解释最合理。A随机选择一个元素作为划分基准B取子序列的第一个元素作为划分基准C用中位数的中位数方法寻找划分基准D以上皆可行。但不同方法,算法复杂度上界可能不同
单选题对下列四个序列进行快速排序,各以第一个元素为基准进行第一次划分,则在该次划分过程中需要移动元素次数最多的序列为()A 1, 3, 5, 7, 9B 9, 7, 5, 3, 1C 5, 3, 1, 7, 9D 5, 7, 9, 1, 3
单选题对待排序的元素序列进行划分,将其分为左、右两个子序列,再对两个子序列施加同样的排序操作,直到子序列为空或只剩一个元素为止。这样的排序方法是()A选择排序B直接插入排序C快速排序D起泡排序
单选题在所有排序方法中,关键字比较的次数与记录的初始排列次序无关的是__(1)__。从未排序序列中依次取出元素与已排序序列(初始时为空)中的元素进行比较,将其放入已排序序列的正确位置上的方法,称为__(2)__。设有1000个无序的元素,希望用最快的速度挑选出其中前10个最大的元素,最好选用__(3)__排序法。空白(3)处应选择()A起泡排序B快速排序C堆排序D基数排序