试证明:若借助栈由输入序列12…n得到的输出序列为p1p2…pn(它是输入序列的一个排列),则在输出序列中不可能出现这样的情形:存在着i<j<k使pj<pk<pi。
试证明:若借助栈由输入序列12…n得到的输出序列为p1p2…pn(它是输入序列的一个排列),则在输出序列中不可能出现这样的情形:存在着i<j<k使pj<pk<pi。
相关考题:
● 设有一个初始为空的栈,若输入序列为 1、2、3、…、n(n3),且输出序列的第一个元素是 n-1,则输入序列中所有元素都出栈后,(37)。(37)A.元素 n-2 一定比n-3 先出栈B.元素 1~n-2 在输出序列中的排列是不确定的C.输出序列末尾的元素一定为 1D.输出序列末尾的元素一定为 n
若已知一个栈的进栈序列是1,2,3…n,其输出序列是P1,P2,P3,…PN,若P1=n,则Pi(1 若已知一个栈的进栈序列是1,2,3…n,其输出序列是P1,P2,P3,…PN,若P1=n,则Pi(1A.IB.n-iC.n-i+1D.不确定
假设以S和X分别表示入栈和出栈的操作,则初态和终态均为空栈的入栈和出栈的操作序列可以表示为仅由S和X组成的序列。称可以操作的序列为合法序列(例如,SXSX为合法序列,SXXS为非法序列)。试给出区分给定序列为合法序列或非法序列的一般准则,并证明:两个不同的合法(栈操作)序列(对同一输入序列)不可能得到相同的输出元素(注意:在此指的是元素实体,而不是值)序列。
单选题数据结构里,若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为()。An-i+1BiCn-iD不确定