同时抛3枚质地均匀的硬币,巧合有2枚正面向上的概率为()。A、0.125B、0.25C、0.375D、0.5

同时抛3枚质地均匀的硬币,巧合有2枚正面向上的概率为()。

  • A、0.125
  • B、0.25
  • C、0.375
  • D、0.5

相关考题:

同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125 B.0.25C.0.375 D.0.50

连抛一枚均匀硬币4次,既有正面又有反面的概率为( )。A.1/16B.1/8C.5/8D.7/8

扔一枚质地均匀的硬币,我们知道出现正面或反面的概率都是0.5,这属于概率应用方法中的( )。A.古典概率方法B.统计概率方法C.主观概率方法D.样本概率方法

一枚均匀硬币连续抛掷3次,求3次均在正面向上的概率

小明和小芳做抛硬币的游戏(硬币是均匀的)。(1)小明前三次抛的结果都是正面朝上,第四次一定会是正面朝上吗?(2) 小芳抛10次硬币,一定是5次正面朝上、5次反面朝上吗?你怎么看以上两个问题,与同伴交流。

同时抛掷3枚均匀的硬币,则恰好有两枚正面向上的概率为A、0.5B、0.25C、0.125D、0.375

同时掷3枚均匀硬币,恰好有2枚正面向上的概率为( )。 A.0.5B.0.25C.0.125D.0.375

假设扔一枚质地均匀的硬币,我们知道出现正面或反面的概率都是0.5,这属于概率应用方法中的( )。A.古典概率方法B.先验概率方法C.主观概率方法D.样本概率方法E.统计概率方法

将3枚均匀的硬币各抛掷一次,恰有2枚正面朝上的概率为 ( )A.AB.BC.CD.D

同时抛掷3枚均匀的硬币,恰好有两枚正面向上的概率为()。A.1/4B.3/8C.1/2D.1/3

关于频率与概率有下列几种说法 ①“明天下雨的概率是90%”,表示明天下雨的可能性很大 ②“抛一枚硬币正面朝上的概率为50%”,表示每抛两次硬币就有一次正面朝上 ③“某彩票中奖的概率是1%”,表示买10张该种彩票不可能中奖 ④“抛一枚硬币正面朝上的概率为50%”,表示随着抛掷硬币次数的增加,“抛出正面朝上”这一事件发生的频率稳定在50%附近 其中正确的说法是()。A.①④B.②③C.④D.①③

在抛一枚质量均匀的硬币的实验中,统计出正面向上的次数占实验总次数的50.33%,这里的50.33%叫做“正面向上”这个事件发生的______,在大量的重复实验中发现它在0.5左右摆动,这个0.5叫做“正面向上”这个事件发生的______。

扔一枚质地均匀的硬币,我们知道出现正面或反面的概率都是0.5,这属于概率应用方法中的()。A:古典概率方法B:统计概率方法C:主观概率方法D:样本概率方法

假设扔一枚质地均匀的硬币,我们知道出现正面或反面的概率都是0.5,这属于概率应用方法中的()。A:古典概率方法B:先验概率方法C:主观概率方法D:样本概率方法E:统计概率方法

掷一枚均匀的硬币若干次,当正面向上次数大于反面向上次数时停止,则在4次之内停止的概率为

同时抛掷三枚质地完全相同的硬币,则正面与反面都出现的概率为( )。A.1/4B.1/3C.2/3D.3/4

一个硬币掷10次,其中5次正面向上的概率是0.5。

晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为。()A、1/2B、1/11C、1/7D、1/18。

同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为().A、0.5B、0.25C、0.125D、0.375

小李和老张打赌扔一枚质地均匀的硬币,扔出的结果是有字的一面向上,从概率理论角度来讲,这一结果称为一个()。A、试验B、事件C、样本D、概率

抛3枚硬币,出现3次正面的概率为()。A、0.12B、0.15C、0.25D、0.125

同时掷3枚均匀硬币,则至多有1枚硬币正面向上的概率为()A、1/8B、1/6C、1/4D、1/2

抛一个质量均匀的硬币,其正面向上的概率为1/2,因此在抛这个硬币100次时,不可能出现没有正面向上的情况。

单选题同时抛3枚质地均匀的硬币,巧合有2枚正面向上的概率为()。A0.125B0.25C0.375D0.5

单选题抛3枚硬币,出现3次正面的概率为()。A0.12B0.15C0.25D0.125

单选题连抛一枚均匀硬币4次,既有正面又有反面的概率为(  )。A1/16B1/8C5/8D7/8

判断题抛一个质量均匀的硬币,其正面向上的概率为1/2,因此在抛这个硬币100次时,不可能出现没有正面向上的情况。A对B错