填空题通过四个互异节点的插值多项式p(x),只要满足(),则p(x)是不超过二次的多项式。

填空题
通过四个互异节点的插值多项式p(x),只要满足(),则p(x)是不超过二次的多项式。

参考解析

解析: 暂无解析

相关考题:

拉格朗日插值法和牛顿插值法的共同缺点是:插值曲线在节点处不光滑、有尖点,而且插值多项式在节点处不可导。()

如果不将多项式次数限制为n,则插值多项式()。A、唯一B、不唯一C、依情况而定D、以上都不对

插值多项式余项Rn(x)与f(x)联系很紧。()

若在[a,b]上用Ln(x)近似f(x),则其截断误差为Rn(x)=f(x)-Ln(x),也称为插值多项式的()A、余项B、插值公式C、插值多项式D、以上都不对

经过A(0,1),B(1,2),C(2,3)的插值多项式P(x)=() A、xB、x+1C、2x+1D、x^2+1

已知多项式P(x),过点(0,0)(2,8)(4,64)(11,1331)(15,3375),它的三阶差商为常数1,一阶二阶差商均不是0,那么P(x)是() A、二次多项式B、不超过二次的多项式C、三次多项式D、四次多项式

通过四个互异节点的插值多项式p(x),只要满足(),则p(x)是不超过二次的多项式。 A、一阶均差为0B、二阶均差为0C、三阶均差为0D、四阶均差为0

依据3个样点(0,1),(1,2)(2,3),其插值多项式p(x)为()A、xB、x+1C、x-1D、x+2

对于代数插值,插值多项式的次数随着节点个数的增加而升高。()

阅读以下说明和程序流程图,将应填入(n)处的字句写在对应栏内。[说明]当一元多项式中有许多系数为零时,可用一个单链表来存储,每个节点存储一个非零项的指受和对应系数。为了便于进行运算,用带头节点的单链表存储,头节点中存储多项式中的非零项数,且各节点按指数递减顺序存储。例如:多项式8x5-2x2+7的存储结构为:流程图图3-1用于将pC(Node结构体指针)节点按指数降序插入到多项式C(多项式POLY指针)中。流程图中使用的符号说明如下:(1)数据结构定义如下:define EPSI 1e-6struct Node{ /*多项式中的一项*/double c; /*系数*/int e; /*指数*/Struct Node *next;};typedef struct{ /*多项式头节点*/int n; /*多项式不为零的项数*/struct Node *head;}POLY;(2)Del(POLY *C,struct Node *p)函数,若p是空指针则删除头节点,否则删除p节点的后继。(3)fabs(double c)函数返回实数C的绝对值。[图3-1](1)

要发送的数据为101110。采用CRC的生成多项式是P(X)=X3+1。则余数为:()。

两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足什么条件时使得p|Cs(s=0,1…)成立?()A、p是奇数B、p是偶数C、p是合数D、p是素数

通过四个互异节点的插值多项式p(x),只要满足(),则p(x)是不超过二次的多项式。

设f(0)=0,f(1)=16,f(2)=46,则f[0,1]=(),f[0,1,2]=(),f(x)的二次牛顿插值多项式为()。

若p(x)是F(x)中次数大于0的多项式,则类比素数的观点不可约多项式有多少条命题是等价的?()A、6.0B、5.0C、4.0D、3.0

若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A、只能有(p(x),f(x))=1B、只能有(p(x)C、(p(x),f(x))=1或者(p(x)D、(p(x),f(x))=1或者(p(x)

一维数据插值的函数yi=interp1(x,y,xi,’nearest’)表示()。A、线性插值B、最近点插值C、3次多项式插值D、3次样条插值

f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A、任意多项式B、非本原多项式C、本原多项式D、无理数多项式

单选题若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A只能有(p(x),f(x))=1B只能有(p(x)C(p(x),f(x))=1或者(p(x)D(p(x),f(x))=1或者(p(x)

单选题通过四个点(xi’,yi)(i=0,1,2,3)的插值多项式为( )。A二次多项式B三次多项式C四次多项式D不超过三次多项式

单选题f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A任意多项式B非本原多项式C本原多项式D无理数多项式

填空题设f(0)=0,f(1)=16,f(2)=46,则f[0,1]=(),f[0,1,2]=(),f(x)的二次牛顿插值多项式为()。

填空题通过四个互异节点的插值多项式p(x),只要满足(),则p(x)是不超过二次的多项式。

问答题求出两多项式函数P(x)、Q(x),使得下面等式成立:  ∫[(2x4-1)cosx+(8x3-x2-1)sinx]dx=P(x)cosx+Q(x)sinx+C

单选题若p(x)是F(x)中次数大于0的多项式,则类比素数的观点不可约多项式有多少条命题是等价的?()A6.0B5.0C4.0D3.0

单选题两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足什么条件时使得p|Cs(s=0,1…)成立?()Ap是奇数Bp是偶数Cp是合数Dp是素数

单选题经过点A(0,1),B(1,2),C(2,3)的插值多项式P(x)为( )。AxBx+1C2x十1D五十1

填空题要发送的数据为101110。采用CRC的生成多项式是P(X)=X3+1。则余数为:()。