问答题

问答题

参考解析

解析:

相关考题:

设随机变量X的分布密度函数则常数A=( )。

设服从N(0,1)分布的随机变量X,其分布函数为Φ(x)。如果Φ(1) = 0.84,则P{ X ≤1}的值是:A. 0. 25B. 0. 68C. 0. 13D. 0. 20

设X为随机变量,E(X)=μ,D(X)=σ^2,则对任意常数C有().

设随机变量X的分布函数为 则X的概率密度函数f(x)为( )。

设φ(x)为连续型随机变量的概率密度,则下列结论中一定正确的是:

设x 为随机变量,且 P (X≤10) =0.3,P(X>30) =0.4,则 P (10A. 0. 1 B. 0. 2C.0. 3 D. 0. 4

设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).

设随机变量X的概率密度函数为fxcx)=,则y=2X的密度函数为(y)=_______.

设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.

设随机变量X的概率密度为fx(x)=的概率密度为_______.

设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;  (Ⅱ)Y的概率密度;  (Ⅲ)概率P{X+Y>1}.

设二维随机变量(X,Y)的概率密度为  求常数A及条件概率密度.

设随机变量X的概率密度为令随机变量,  (Ⅰ)求Y的分布函数;  (Ⅱ)求概率P{X≤Y}.

设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为  (Ⅰ)求P{Y≤EY};  (Ⅱ)求Z=X+Y的概率密度.

设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.

设随机变量X的分布函数为求随机变量X的概率密度和概率

设随机变量x的概率密度为

设X为连续随机变量,P(X≥3) =0.4,则P(XA. 0. 4 B. 0. 5C. 0. 6 D. 0. 7

设 X 为随机变量,且 P( X ≤2) =0.7,P(X>2) =0.1,则 P(X〈-2)= ( )。 A. 0. 1B. 0. 2C. 0.3 D. 0.4

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()

设随机变量X~N(1,1),为使X+C~N(0,l),则常数C=()

设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。A、-p(y)B、1-p(-y)C、p(-y)D、.p(y)

设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。

问答题15.设随机变量X的概率密度为

多选题数学期望的性质包括()A设c为常数,则E(c)=cB设X为随机变量,α为常数,则E(αX)=αE(X)C设X、y是两个随机变量,则E(X±Y)=E(X)+E(Y)D设X、y是相互独立的随机变量,则E(XY)=E(X)E(Y)E设c为常数,则E(c)=0。

问答题设随机变量(X,Y)的概率密度为   求:(1)系数k.   (2)边缘概率密度fX(x),fY(y).   (3)P{X+Y1}.

多选题方差的性质包括()A设c为常数,则D(c)=0B设X为随机变量,c为常数,则有D(cX)= csup2/supD(X)C设X、y是两个相互独立的随机变量,则有D(X+y)=D(X)+D(y)D设c为常数,则D(c)=cE设X为随机变量,f为常数,则有D(cX)==cD(X)